Perspective
In the pursuit of a new route on acute myeloid leukemia treatment
Suzieonette Mawlong*
Published: 29 December, 2021 | Volume 4 - Issue 1 | Pages: 001-003
Acute myeloid leukaemia (AML) is the forefront disorder of the bone marrow among others that disrupt the normal production of blood cells and platelets. The bone marrow microenvironment or the bone marrow niche (BM niche) that orchestrates the proliferation and survival of Leukaemic stem cells (LSC) is the reason for relapse after complete remission and also chemotherapy drug resistance. As for most cancers oxidative phosphorylation, a fundamental mitochondrial process of energy production, is under focus for the treatment of AML and a novel strategy of targeting heat shock proteins appears as a promising route for further research.
Read Full Article HTML
DOI: 10.29328/journal.ijbmr.1001014
Cite this Article
Read Full Article PDF
Keywords:
Acute Myeloid Leukaemia (AML); Bone marrow microenvironment; Oxidative phosphorylation target; Heat Shock Transcription Factor 1 (HSF1)
References
- Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet. 2018 Aug 18;392(10147):593-606. doi: 10.1016/S0140-6736(18)31041-9. Epub 2018 Aug 2. PMID: 30078459.
- Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 2019 Jul;36:70-87. doi: 10.1016/j.blre.2019.04.005. Epub 2019 Apr 29. PMID: 31101526.
- Magina KN, Pregartner G, Zebisch A, Wölfler A, Neumeister P, Greinix HT, Berghold A, Sill H. Cytarabine dose in the consolidation treatment of AML: a systematic review and meta-analysis. Blood. 2017 Aug 17;130(7):946-948. doi: 10.1182/blood-2017-04-777722. Epub 2017 Jul 5. PMID: 28679736.
- Cree IA, Charlton P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer. 2017 Jan 5;17(1):10. doi: 10.1186/s12885-016-2999-1. PMID: 28056859; PMCID: PMC5214767.
- van Gils N, Denkers F, Smit L. Escape From Treatment; the Different Faces of Leukemic Stem Cells and Therapy Resistance in Acute Myeloid Leukemia. Front Oncol. 2021 May 3;11:659253. doi: 10.3389/fonc.2021.659253. PMID: 34012921; PMCID: PMC8126717.
- Bolandi SM, Pakjoo M, Beigi P, Kiani M, Allahgholipour A, Goudarzi N, Khorashad JS, Eiring AM. A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia. Cells. 2021 Oct 21;10(11):2833. doi: 10.3390/cells10112833. PMID: 34831055; PMCID: PMC8616250.
- Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, Garcia-Manero G, Konopleva M, Ravandi F. Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 2021 Feb 22;11(2):41. doi: 10.1038/s41408-021-00425-3. PMID: 33619261; PMCID: PMC7900255.
- Kumar R, Godavarthy PS, Krause DS. The bone marrow microenvironment in health and disease at a glance. J Cell Sci. 2018 Feb 22;131(4):jcs201707. doi: 10.1242/jcs.201707. PMID: 29472498.
- Stefanovic S, Schuetz F, Sohn C, Beckhove P, Domschke C. Bone marrow microenvironment in cancer patients: immunological aspects and clinical implications. Cancer Metastasis Rev. 2013 Jun;32(1-2):163-78. doi: 10.1007/s10555-012-9397-1. PMID: 23081701.
- Xu B, Hu R, Liang Z, Chen T, Chen J, Hu Y, Jiang Y, Li Y. Metabolic regulation of the bone marrow microenvironment in leukemia. Blood Rev. 2021 Jul;48:100786. doi: 10.1016/j.blre.2020.100786. Epub 2020 Dec 9. PMID: 33353770.
- Marlein CR, Zaitseva L, Piddock RE, Robinson SD, Edwards DR, Shafat MS, Zhou Z, Lawes M, Bowles KM, Rushworth SA. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood. 2017 Oct 5;130(14):1649-1660. doi: 10.1182/blood-2017-03-772939. Epub 2017 Jul 21. PMID: 28733324.
- Sriskanthadevan S, Jeyaraju DV, Chung TE, Prabha S, Xu W, Skrtic M, Jhas B, Hurren R, Gronda M, Wang X, Jitkova Y, Sukhai MA, Lin FH, Maclean N, Laister R, Goard CA, Mullen PJ, Xie S, Penn LZ, Rogers IM, Dick JE, Minden MD, Schimmer AD. AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood. 2015 Mar 26;125(13):2120-30. doi: 10.1182/blood-2014-08-594408. Epub 2015 Jan 28. PMID: 25631767; PMCID: PMC4375109.
- Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, McAfoos T, Morlacchi P, Ackroyd J, Agip AA, Al-Atrash G, Asara J, Bardenhagen J, Carrillo CC, Carroll C, Chang E, Ciurea S, Cross JB, Czako B, Deem A, Daver N, de Groot JF, Dong JW, Feng N, Gao G, Gay J, Do MG, Greer J, Giuliani V, Han J, Han L, Henry VK, Hirst J, Huang S, Jiang Y, Kang Z, Khor T, Konoplev S, Lin YH, Liu G, Lodi A, Lofton T, Ma H, Mahendra M, Matre P, Mullinax R, Peoples M, Petrocchi A, Rodriguez-Canale J, Serreli R, Shi T, Smith M, Tabe Y, Theroff J, Tiziani S, Xu Q, Zhang Q, Muller F, DePinho RA, Toniatti C, Draetta GF, Heffernan TP, Konopleva M, Jones P, Di Francesco ME, Marszalek JR. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med. 2018 Jul;24(7):1036-1046. doi: 10.1038/s41591-018-0052-4. Epub 2018 Jun 11. PMID: 29892070.
- Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, Ashton JM, Pei S, Grose V, O'Dwyer KM, Liesveld JL, Brookes PS, Becker MW, Jordan CT. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013 Mar 7;12(3):329-41. doi: 10.1016/j.stem.2012.12.013. Epub 2013 Jan 17. PMID: 23333149; PMCID: PMC3595363.
- Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, Bosc C, Sugita M, Stuani L, Fraisse M, Scotland S, Larrue C, Boutzen H, Féliu V, Nicolau-Travers ML, Cassant-Sourdy S, Broin N, David M, Serhan N, Sarry A, Tavitian S, Kaoma T, Vallar L, Iacovoni J, Linares LK, Montersino C, Castellano R, Griessinger E, Collette Y, Duchamp O, Barreira Y, Hirsch P, Palama T, Gales L, Delhommeau F, Garmy-Susini BH, Portais JC, Vergez F, Selak M, Danet-Desnoyers G, Carroll M, Récher C, Sarry JE. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discov. 2017 Jul;7(7):716-735. doi: 10.1158/2159-8290.CD-16-0441. Epub 2017 Apr 17. PMID: 28416471; PMCID: PMC5501738.
- Chen F, Fan Y, Cao P, Liu B, Hou J, Zhang B, Tan K. Pan-Cancer Analysis of the Prognostic and Immunological Role of HSF1: A Potential Target for Survival and Immunotherapy. Oxid Med Cell Longev. 2021 Jun 18;2021:5551036. doi: 10.1155/2021/5551036. PMID: 34239690; PMCID: PMC8238600.
Figures: